We consider the problem of dynamic coupling between the rapid thermal solidification and mechanical compression of steel in twin-roll steel strip casting. In traditional steel casting, molten steel is first solidified into thick slabs and then compressed via a series of rollers to create thin sheets of steel. In twin-roll casting, these two processes are combined, thereby making control of the overall system significantly more challenging. Therefore, a simple and accurate model that characterizes these coupled dynamics is needed for model-based control of the system. We model the solidification process with explicit consideration for the mushy (semi-solid) region of steel by using a lumped parameter moving boundary approach. The moving boundaries are also used to estimate the size and composition of the region of steel that must be compressed to maintain a uniform strip thickness. A novelty of the proposed model is the use of a stiffening spring to characterize the stiffness of the resultant strip as a function of the relative amount of mushy and solid steel inside the compression region. In turn this model is used to determine the force required to carry out the compression. Simulation results demonstrate key features of the overall model.

This content is only available via PDF.
You do not currently have access to this content.