A hybrid control system for multi degrees of freedom robotic manipulator is designed by integrating a proportional-integral-derivative controller (PID) and a model reference adaptive controller (MRAC) in order to further improve the accuracy and joint convergence speed performance. For the 1-DOF link, because the inertia matrices and nonlinear term of the dynamic equation are constant, we can directly combine the PID and MRAC controller to design the PID+MRAC controller. However, for the more than 1-DOF link case, it is no longer applicable because the inertia matrices and nonlinear term of the dynamic equation are not constant. By using an improved adaptive algorithm and structure, and by combining the PID and improved MRAC controllers, a controller is designed for the more than 1-DOF link case. The convergence performance of the PID controller, MRAC and the PID+MRAC hybrid controller for 1-DOF, 2-DOF and subsequently 3-DOF manipulators are compared.

This content is only available via PDF.
You do not currently have access to this content.