The purpose of this study is to numerically evaluate the performance of information entropy in electroencephalography (EEG) signal analysis. In particular, we use EEG data from an Alzheimer’s disease (AD) pilot study and apply several wavelet functions to determine the signals’ time and frequency characteristics. The wavelet entropy and wavelet sample entropy of the continuous wavelet transformed data are then determined at various scale ranges corresponding to major brain frequency bands. Non-parametric statistical analysis is then used to compare the entropy features of the EEG data obtained in trials with AD patients and age-matched healthy normal subjects under resting eyes-closed (EC) and eye-open (EO) conditions. The effectiveness and reliability of both choice of wavelet functions and the parameters used in wavelet sample entropy calculations are discussed and the ideal choices are identified. The result shows that, when applied to wavelet transformed filtered data, information entropy can be effective in determining EEG discriminant features, after selecting the best wavelet functions and window size of the sample entropy.
- Dynamic Systems and Control Division
A Numerical Study of Information Entropy in EEG Wavelet Analysis
Ghorbanian, P, & Ashrafiuon, H. "A Numerical Study of Information Entropy in EEG Wavelet Analysis." Proceedings of the ASME 2016 Dynamic Systems and Control Conference. Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation. Minneapolis, Minnesota, USA. October 12–14, 2016. V001T10A003. ASME. https://doi.org/10.1115/DSCC2016-9836
Download citation file: