This paper presents state estimation for a system of diffusion equations coupled in the boundary appearing in reduced electrochemical models of lithium-ion batteries with multiple active materials in single electrodes. The observer is synthesized from a single particle model and is based on the backstepping method for partial differential equations. The observer is suitable for state of charge estimation in battery management systems and is an extension of existing backstepping observers which were derived only for cells with electrodes of single active materials. Observer gains still can be computed analytically in terms of Bessel and modified Bessel functions. This extension is motivated by the trend in cell manufacturing to use multiple active materials to combine power and energy characteristics or reduce degradation.
- Dynamic Systems and Control Division
State Estimation for an Electrochemical Model of Multiple-Material Lithium-Ion Batteries
Camacho-Solorio, L, Krstic, M, Klein, R, Mirtabatabaei, A, & Moura, SJ. "State Estimation for an Electrochemical Model of Multiple-Material Lithium-Ion Batteries." Proceedings of the ASME 2016 Dynamic Systems and Control Conference. Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation. Minneapolis, Minnesota, USA. October 12–14, 2016. V001T08A004. ASME. https://doi.org/10.1115/DSCC2016-9877
Download citation file: