Hydraulic fracturing is one of the key technologies for producing shale oil and gas. During hydraulic fracturing, a blender is used to mix sand with water and chemicals to obtain a fluidic mixture that will be pumped down a well to frack rocks. In order to achieve high-quality fracturing during a job, the blender needs to maintain its tub level as well as the density of the fluidic mixture. In this paper, an auto-tuning proportional-integral (PI) control is developed for the blender automation system to maintain the tub level of its fluidic mixture. The control system adopts a single-loop PI with gains that can be auto-tuned during a job. A relay feedback test is conducted for auto-tuning the PI gains online. The auto-tuning PI control has been successfully tested in a blender simulator. Experimental results have shown that the control performance was improved after auto-tuning and that the control system was adaptive to variation in system parameters.
- Dynamic Systems and Control Division
Auto-Tuning Tub-Level Control of Blender in Hydraulic Fracturing
Chen, Z, Cargill, L, & Naizer, B. "Auto-Tuning Tub-Level Control of Blender in Hydraulic Fracturing." Proceedings of the ASME 2016 Dynamic Systems and Control Conference. Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation. Minneapolis, Minnesota, USA. October 12–14, 2016. V001T08A003. ASME. https://doi.org/10.1115/DSCC2016-9848
Download citation file: