This paper presents an experimental setup and results on enhancing sensations of a common haptic effect -a virtual wall-induced via neuromuscular electrical stimulation (NMES). A single degree of freedom (DOF) elbow platform with position sensing was constructed. This platform supports the arm in the horizontal plane while elbow flexion and extension torques are generated by stimulation of triceps brachii or the biceps brachii muscles. The response of the system was experimentally characterized by determining the latency, and the relationship between stimulation pulse width, stimulation current, joint position and generated output torques. After system characterization, stimulation control methods to enhance haptic sensations were designed, implemented and pilot tested under a variety of virtual wall hit scenarios. Our results indicate that the wall hit trajectories and interaction were improved by control laws that initiated low intensity stimulation prior to the wall hit and utilized co-contraction for damping. The “priming” of the muscle with low intensity stimulation prior to the main stimulation improved the responsiveness of muscle contractions.
- Dynamic Systems and Control Division
Enhancing Haptic Effects Displayed via Neuromuscular Electrical Stimulation
Harris, M, McCarty, M, Montes, A, & Celik, O. "Enhancing Haptic Effects Displayed via Neuromuscular Electrical Stimulation." Proceedings of the ASME 2016 Dynamic Systems and Control Conference. Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation. Minneapolis, Minnesota, USA. October 12–14, 2016. V001T07A003. ASME. https://doi.org/10.1115/DSCC2016-9823
Download citation file: