Recently, the authors designed and fabricated an Instrumented Walkway for the estimation of the ankle mechanical impedance in the sagittal and frontal planes during walking in arbitrary directions [1]. It consists of a powered platform; therefore, the users do not need to wear or carry any measurement device or actuation system other than reflective markers used to record the ankle kinematics with a motion capture camera system. This paper describes the continuous development of the Instrumented Walkway and presents an experimental preliminary validation of its capability to estimate the impedance of a system with time-varying dynamics. To validate the system, a mockup with mechanical characteristics similar to a human lower-leg and controllable time-varying stiffness was used. The stiffness of the mockup was estimated with fixed and time-varying stiffness. With fixed stiffness, a stochastic system identification method was used to estimate the mockup’s impedance. When the mockup presented a time-varying stiffness, a second order parametric model was used. The RMS error between the two methods was 2.81 Nm/rad (maximum 4.12 Nm/rad and minimum of −3.41 Nm/rad). The results show that the proposed approach can estimate the stiffness of systems with time-varying dynamics or static dynamics with similar accuracy. Since the setup was already validated for systems with time-invariant dynamics, it concluded the system’s applicability for time-varying systems such as the human ankle-foot during the stance phase.

This content is only available via PDF.
You do not currently have access to this content.