This paper presents an original experimental setup for controlling and measuring the crosswind flight of airborne wind energy systems in a laboratory environment. Execution of cross-wind flight patterns, which is achieved in this work through the asymmetric motion of three tethers, enables dramatic increases in energy generation compared with stationary operation. Achievement of crosswind flight in the 1:100-scale experimental framework described herein allows for rapid, inexpensive, and dynamically scalable characterization of new control algorithms without recourse to expensive full-scale prototyping. This work is the first example of successful lab-scale control and measurement of crosswind motion for an airborne wind energy system. Specifically, this paper presents the experimental setup, crosswind flight control strategy, and experimental results for a model of the Altaeros Buoyant Airborne Turbine (BAT). The results demonstrate that crosswind flight control can achieve nearly 50 percent more power production then stationary operation, while also demonstrating the potential of the experimental framework for further algorithm development.

This content is only available via PDF.
You do not currently have access to this content.