In this paper, a novel fuzzy gain-scheduling output feedback control method is presented for T-S fuzzy systems subject to actuator saturation. To deal with saturation nonlinearity, the dead-zone function of control input is treated as an additional controller input. With the help of set conclusion condition, the controller can be synthesised based on fuzzy Lyapunov functions to guarantee the exponential stability of the closed-loop system in a larger region and a better L2 gain performance. Moreover, the full block S-procedure, which is widely used in robust control theory, is introduced to relax the synthesis conditions for T-S fuzzy systems to reduce the conservatism caused by quadratic terms in the conditions. Finally, a numerical example is provided to illustrates the effectiveness of the proposed control method.
- Dynamic Systems and Control Division
Output Feedback Control for Fuzzy Systems Subject to Actuator Saturation Based on Fuzzy Lyapunov Functions
Ban, X, Liu, Y, Huang, X, & Wu, F. "Output Feedback Control for Fuzzy Systems Subject to Actuator Saturation Based on Fuzzy Lyapunov Functions." Proceedings of the ASME 2016 Dynamic Systems and Control Conference. Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation. Minneapolis, Minnesota, USA. October 12–14, 2016. V001T02A006. ASME. https://doi.org/10.1115/DSCC2016-9879
Download citation file: