The reference governor modifies set-point commands to a closed-loop system in order to enforce state and control constraints. In this paper, we describe an approach to reference governor implementation for nonlinear systems, which is based on bounding (covering) the response of a nonlinear system by the response of a linear model with a set-bounded disturbance input. Such a design strategy is of interest as it reduces the online optimization problem to a convex quadratic programming (QP) problem with linear inequality constraints, thereby permitting standard QP solvers to be used. A numerical example is reported.

This content is only available via PDF.
You do not currently have access to this content.