The objective of this paper is to develop a novel two-level supervised fuzzy controller to stabilize the response of electrostatically actuated microbeams beyond their pull-in range. To this end, Lagrange equations are utilized to derive the differential equations governing the dynamic behavior of the system. To investigate the possibility of using a passive control strategy, the static behavior of the system is studied in detail. Through some open loop simulations, the qualitative and quantitative dependence of the beam deflection to the applied voltage and system parameters are studied. Based on the understanding obtained from these studies, a single level fuzzy controller is designed to control the response of the microstructure. In order to enhance the performance of the closed-loop system, another higher level supervisory fuzzy controller is designed to tune the maximum allowable voltage the lower level controller can apply. Simulation results reveal that both single level and multi-level fuzzy controllers can extend the travel range of the microbeams beyond its pull-in range. However the rise time, overshoot and settling time in the multilevel controlled system is far better than that of a simple single level fuzzy controller. The novel controller presented in this paper can be applied in most intrinsically nonlinear nano/micro structures to help them to have more efficient regulations and command tracking maneuvers.

This content is only available via PDF.
You do not currently have access to this content.