In this work an error-integral-driven sliding mode controller (EID-SMC) for multi-input multi-output (MIMO) minimum phase linear time-invariant (LTI) systems with feedthrough controls and output disturbance is analyzed. Though the sliding variable remains in the vicinity of the sliding surface without reaching it, it is shown that the steady-state error vanishes exponentially asymptotically within the boundary layer even if parameter uncertainty and unmatched input/output disturbances exist. The pole-placement is accomplished indirectly by an iterative optimization routine by considering limits on controls and state contrary to the existing practice in SMC where either direct pole placement or quadratic norm optimality of a performance is used. For the proposed controller framework the Luenberger observer is presented.
- Dynamic Systems and Control Division
Analysis of an Error Integral Driven MIMO SM Regulator for LTI Systems Available to Purchase
Yunt, K. "Analysis of an Error Integral Driven MIMO SM Regulator for LTI Systems." Proceedings of the ASME 2016 Dynamic Systems and Control Conference. Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation. Minneapolis, Minnesota, USA. October 12–14, 2016. V001T01A002. ASME. https://doi.org/10.1115/DSCC2016-9684
Download citation file: