The design and development of the rotating machinery require a precise identification of its dynamic response for efficient operation and failure prevention. Determination of critical speeds and mode shapes is crucial in this regard. In this paper, a finite element model (FEM) based on the Euler beam theory is developed for investigating the dynamic behavior of flexible rotors. In-house code in Scilab environment, an open source platform, is developed to solve the matrix equation of motion of the rotor-bearing system. The finite element model is validated by the impact hammer test and the dynamic testing performed on the rotors supported on a purpose-built experimental setup. Bearing stiffness is approximated by using the Hertzian contact theory. Obtaining the critical speeds and mode shapes further improves the understanding of dynamic response of rotors. This study paves way towards advanced research in rotordynamics in Faculty of Mechanical Engineering, GIK Institute.
- Dynamic Systems and Control Division
Finite Element Modelling of a Generic Rotor-Bearing System and Experimental Validation Available to Purchase
Rehman, A, Ahmed, KS, Umrani, FA, Munir, B, Mehboob, A, Ahmad, SM, & Kazmi, Z. "Finite Element Modelling of a Generic Rotor-Bearing System and Experimental Validation." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 3: Multiagent Network Systems; Natural Gas and Heat Exchangers; Path Planning and Motion Control; Powertrain Systems; Rehab Robotics; Robot Manipulators; Rollover Prevention (AVS); Sensors and Actuators; Time Delay Systems; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamics Control; Vibration and Control of Smart Structures/Mech Systems; Vibration Issues in Mechanical Systems. Columbus, Ohio, USA. October 28–30, 2015. V003T53A004. ASME. https://doi.org/10.1115/DSCC2015-9901
Download citation file: