Target search using autonomous robots is an important application for both civil and military scenarios. In this paper, a model predictive control (MPC)-based probabilistic search method is presented for a ground robot to localize a stationary target in a dynamic environment. The robot is equipped with a binary sensor for target detection, of which the uncertainties of binary observation are modeled as a Gaussian function. Under the model predictive control framework, the probability map of the target is updated via the recursive Bayesian estimation and the collision avoidance with obstacles is enforced using barrier functions. By approximating the updated probability map using a Gaussian Mixture Model, an analytical form of the objective function in the prediction horizon is derived, which is promising to reduce the computation complexity compared to numerical integration methods. The effectiveness of the proposed method is demonstrated by performing simulations in dynamic scenarios with both static and moving obstacles.
- Dynamic Systems and Control Division
Model Predictive Control-Based Probabilistic Search Method for Autonomous Ground Robot in a Dynamic Environment
Liu, C, Li, SE, & Hedrick, JK. "Model Predictive Control-Based Probabilistic Search Method for Autonomous Ground Robot in a Dynamic Environment." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 3: Multiagent Network Systems; Natural Gas and Heat Exchangers; Path Planning and Motion Control; Powertrain Systems; Rehab Robotics; Robot Manipulators; Rollover Prevention (AVS); Sensors and Actuators; Time Delay Systems; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamics Control; Vibration and Control of Smart Structures/Mech Systems; Vibration Issues in Mechanical Systems. Columbus, Ohio, USA. October 28–30, 2015. V003T49A003. ASME. https://doi.org/10.1115/DSCC2015-9814
Download citation file: