This paper is concerned with the robust gain-scheduling output feedback control problem for a class of linear parameter-varying systems with time-varying state delay. The controlled plant under consideration is described as a linear fractional transformation (LFT) model of scheduling parameters. Dynamic integral quadratics (IQCs) are employed to characterize the input-output behavior of the state-delay nonlinearity. The robust stability and the L2-gain performance are first analyzed using quadratic Lyapunov function. Then, the design of dynamic output-feedback controllers robust against the plant state-delay nonlinearity and gain-scheduled by parameters is examined. The synthesis conditions of such robust gain-scheduling controllers are formulated in terms of linear matrix inequalities (LMIs) plus a line search, which can be solved effectively using existing algorithms. A numerical example has been used to demonstrate the effectiveness and advantages of the proposed approach.

This content is only available via PDF.
You do not currently have access to this content.