In this paper, we present adaptive architectures for networked multiagent systems operating over directed networks to achieve resilient coordination in the presence of disturbances. Specifically, we consider a class of unforeseen adverse conditions consisting of persistent exogenous disturbances and present a state emulator-based distributed adaptive control architecture to retrieve the nominal networked multiagent system behavior. The stability properties of the proposed architecture are analyzed using results from Lyapunov stability and matrix mathematics. Illustrative numerical examples are provided to demonstrate the theoretical findings.

This content is only available via PDF.
You do not currently have access to this content.