Predictive modeling of zone environment plays a critical role in developing and deploying advanced performance monitoring and control strategies for energy usage minimization in buildings while maintaining occupant comfort. The task remains extremely challenging, as buildings are fundamentally complex systems with large uncertainties stemming from weather, occupants, and building dynamics. Over the past few years, purely data-driven various control-oriented modeling techniques have been proposed to address different requirements, such as prediction accuracy, flexibility, computation and memory complexity. In this context, this paper presents a comparative evaluation among representative methods of different classes of models, such as first principles driven (e.g., lumped parameter autoregressive models using simple physical relationships), data-driven (e.g., artificial neural networks, Gaussian processes) and hybrid (e.g., semi-parametric). Apart from quantitative metrics described above, various qualitative aspects such as cost of commissioning, robustness and adaptability are discussed as well. Real data from Iowa Energy Center’s Energy Resource Station (ERS) test bed is used as the basis of evaluation presented here.
- Dynamic Systems and Control Division
Comparative Evaluation of Control-Oriented Zone Temperature Prediction Modeling Strategies in Buildings
Chinde, V, Heylmun, JC, Kohl, A, Jiang, Z, Sarkar, S, & Kelkar, A. "Comparative Evaluation of Control-Oriented Zone Temperature Prediction Modeling Strategies in Buildings." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications. Columbus, Ohio, USA. October 28–30, 2015. V002T34A009. ASME. https://doi.org/10.1115/DSCC2015-9864
Download citation file: