The control objective of exoskeleton for human performance augmentation is to minimize the human machine interaction force while carrying external loads and following human motion. This paper addresses the dynamics and the interaction force control of a 1-DOF hydraulically actuated joint exoskeleton. A spring with unknown stiffness is used to model the human-machine interface. A cascade force control method is adopted with high-level controller generating the reference position command while low level controller doing motion tracking. Adaptive robust control (ARC) algorithm is developed for both two controllers to deal with the effect of parametric uncertainties and uncertain nonlinearities of the system. The proposed adaptive robust cascade force controller can achieve small human-machine interaction force and good robust performance to model uncertainty which have been validated by experiment.
- Dynamic Systems and Control Division
Adaptive Robust Cascade Force Control of 1-DOF Joint Exoskeleton for Human Performance Augmentation
Chen, S, Yao, B, Chen, Z, Zhu, X, & Zhu, S. "Adaptive Robust Cascade Force Control of 1-DOF Joint Exoskeleton for Human Performance Augmentation." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications. Columbus, Ohio, USA. October 28–30, 2015. V002T33A006. ASME. https://doi.org/10.1115/DSCC2015-9825
Download citation file: