Additive Manufacturing (AM) processes are a class of manufacturing processes in which parts are fabricated in a layer-by-layer fashion. The layer-by-layer fabrication method creates layer-to-layer dynamics. Implementing process control that neglects the layer-to-layer dynamics can lead to process instability. While repetitive process controllers which utilize only layer-to-layer feedback are a viable method, their usefulness is limited in that they are not well-suited for tracking non-periodic layer-domain references. However, since the entire reference signal is typically known a priori in AM process fabrications, a predictive control methodology can be useful for controlling fabrications in which the reference signal is non-periodic. In this paper a model predictive control formulation is extended to two-dimensions and utilized for repetitive process control Simulation results comparing open-loop and controlled fabrications for a Laser Metal Deposition process are given.
- Dynamic Systems and Control Division
A Model Predictive Repetitive Process Control Formulation for Additive Manufacturing Processes
Sammons, PM, Bristow, DA, & Landers, RG. "A Model Predictive Repetitive Process Control Formulation for Additive Manufacturing Processes." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications. Columbus, Ohio, USA. October 28–30, 2015. V002T32A003. ASME. https://doi.org/10.1115/DSCC2015-9780
Download citation file: