Temperature control is undoubtedly one of the important challenges in open-cathode fuel cell systems. Due to cost considerations, it is traditionally achieved by constant-speed operation of the fans. In this paper, a state feedback temperature controller, combined with a Kalman filter to mitigate the noisy temperature measurements is designed and implemented. The controller-filter set facilitates robust thermal management with respect to model uncertainties and measurement noise. The proposed temperature control not only manages to track the fuel cell temperature reference, it can also be used to stabilize the output voltage. Voltage regulation is of great importance for open-cathode fuel cells as it guarantees a predictable and fixed fuel cell output voltage for given current values in spite of internal and external disturbances. The controllers were implemented experimentally and the results show promising performances in regulating the reference temperature and voltage despite model uncertainties and disturbances.

This content is only available via PDF.
You do not currently have access to this content.