This paper develops a framework for along-the-channel and through-the-membrane control oriented modeling of polymer electrolyte membrane (PEM) fuel cells. The initial modeling framework is spatially one-dimensional by one-dimensional (1+1D) and is described by unsteady partial differential equations (PDEs). Numerical techniques convert the PDEs and boundary conditions to ordinary differential and algebraic equations that are convenient for state-space modeling. The modeling framework includes two-phase, thermal, and other transient effects. The generality of the modeling framework and its ability to be represented in state-space form facilitate complexity reduction and control-oriented application.

This content is only available via PDF.
You do not currently have access to this content.