In this paper, we propose a hierarchical framework to reduce the design complexity of connected cruise control (CCC), which is used to regulate the longitudinal motion of a vehicle by utilizing wireless vehicle-to-vehicle (V2V) communication. A high-level controller is designed to generate desired motion of the CCC vehicle based on the motion of multiple vehicles ahead. A low-level controller is used to regulate the engine torque and select the appropriate gear to enable the vehicle to track the desired motion. To cope with external disturbances and uncertain physical parameters, we use an adaptive control strategy for the low-level controller. In a case study, we design a specific CCC algorithm by using the presented hierarchical framework. Numerical simulations are used to validate the analytical results and test the system performance.
- Dynamic Systems and Control Division
Hierarchical Design for Connected Cruise Control
Zhang, L, He, C, Sun, J, & Orosz, G. "Hierarchical Design for Connected Cruise Control." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems. Columbus, Ohio, USA. October 28–30, 2015. V001T17A005. ASME. https://doi.org/10.1115/DSCC2015-9993
Download citation file: