This paper presents a fuel efficient control strategy for a group of connected hybrid electric vehicles (HEVs) in urban road conditions. A hierarchical control architecture is proposed in this paper where the higher level controller is considered to be a part of the transportation infrastructure while the lower level controllers are considered to be present in every HEV. The higher level controller uses model predictive control strategy to evaluate the energy efficient velocity profiles for every vehicle for a given horizon. Each lower level controller then tracks its velocity profile (obtained from the higher level controller) in a fuel efficient fashion using equivalent consumption minimization strategy (ECMS). In this paper, the vehicles are modeled in Autonomie software and the simulation results provided in the paper shows the effectiveness of our proposed control architecture.
- Dynamic Systems and Control Division
Fuel Efficient Control Strategies for Connected Hybrid Electric Vehicles in Urban Roads
Lin, R, HomChaudhuri, B, & Pisu, P. "Fuel Efficient Control Strategies for Connected Hybrid Electric Vehicles in Urban Roads." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems. Columbus, Ohio, USA. October 28–30, 2015. V001T17A003. ASME. https://doi.org/10.1115/DSCC2015-9800
Download citation file: