To compensate the glucose variability caused by meals is essential in developing Artificial Pancreas for type 1 diabetes. Most existing algorithms rely on meal announcements and determine the insulin doses based on an Insulin-to-Carbohydrate ratio (I:C ratio). However, patients, especially young patients, often forget to provide meal information under natural living conditions. A Variable State Dimension (VSD) based algorithm is developed to detect meals which are unknown to the controller (unannounced meals). The algorithm is evaluated using an FDA-approved UVa/Padova simulator and has demonstrated to achieve 95% success rate in meal detection with less than 17% false alarm rate. In addition, the average meal size estimation error is no more than 13%. We then integrate the VSD-based meal detection and estimation algorithm with our previous published glucose dynamics model consisting of both insulin and carbohydrate inputs. The goodness of fit for 30min-ahead glucose predictions using meal information provided by the VSD-based algorithm has increased by 86% in average compared to the prediction using a model without meal input based on plasma blood glucose (BG) data. Simulation results also show that compared to several meal detection/estimation algorithms in the literature, the VSD-based algorithm has comparable or shorter detection time.
- Dynamic Systems and Control Division
Meal Detection and Meal Size Estimation for Type 1 Diabetes Treatment: A Variable State Dimension Approach
Xie, J, & Wang, Q. "Meal Detection and Meal Size Estimation for Type 1 Diabetes Treatment: A Variable State Dimension Approach." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems. Columbus, Ohio, USA. October 28–30, 2015. V001T15A003. ASME. https://doi.org/10.1115/DSCC2015-9905
Download citation file: