Fast and accurate state estimation is one of the major challenges for designing an advanced battery management system based on high-fidelity physics-based model. This paper evaluates the performance of a modified extended Kalman filter (EKF) for on-line state estimation of a pseudo-2D thermal-electrochemical model of a lithium-ion battery under a highly dynamic load with 16C peak current. The EKF estimation on the full model is shown to be significantly more accurate (< 1% error on SOC) than that on the single-particle model (10% error on SOC). The efficiency of the EKF can be improved by reducing the order of the discretised model while maintaining a high level of accuracy. It is also shown that low noise level in the voltage measurement is critical for accurate state estimation.

This content is only available via PDF.
You do not currently have access to this content.