This two-part paper presents the development of a hierarchical control framework for the control of power flow throughout large-scale systems. Part II presents the application of the graph-based modeling framework and three-level hierarchical control framework to the power systems of an aircraft. The simplified aircraft system includes an engine, electrical, and thermal systems. A graph based approach is used to model the system dynamics, where vertices represent capacitive elements such as fuel tanks, heat exchangers, and batteries with states corresponding to the temperature and state of charge. Edges represent power flows in the form of electricity and heat, which can be actuated using control inputs. The aircraft graph is then partitioned spatially into systems and subsystems, and temporally into fast, medium, and slow dynamics. These partitioned graphs are used to develop models for each of the three levels of the hierarchy. Simulation results show the benefits of hierarchical control compared to a centralized control method.
- Dynamic Systems and Control Division
Hierarchical Control of Multi-Domain Power Flow in Mobile Systems: Part II — Aircraft Application
Williams, MA, Koeln, JP, & Alleyne, AG. "Hierarchical Control of Multi-Domain Power Flow in Mobile Systems: Part II — Aircraft Application." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems. Columbus, Ohio, USA. October 28–30, 2015. V001T08A005. ASME. https://doi.org/10.1115/DSCC2015-9904
Download citation file: