Current and next generation tactical aircraft face daunting thermal challenges that involve reliably maintaining thermal constraints despite large transient loads. Model-based control synthesis has the potential to improve the performance of a vapor compression cycle system during its transient operating condition, driven by intermittent and dynamic thermal loads, when compared to the current heuristic control design technique. However, the excessive labor and expertise necessary to develop models amenable to model-based control design techniques has been an impediment to widespread deployment. This paper demonstrates a Simulink pathway for model-based design via the AFRL Transient Thermal Modeling and Optimization (ATTMO) toolbox. An effective, simple linear quadratic gaussian control design is demonstrated and opens the door for widespread deployment of many advanced control techniques.
- Dynamic Systems and Control Division
A Simulink Pathway for Model-Based Control of Vapor Compression Cycles
Ngo, AD, Cory, JR, Hencey, BM, & Patnaik, SS. "A Simulink Pathway for Model-Based Control of Vapor Compression Cycles." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems. Columbus, Ohio, USA. October 28–30, 2015. V001T08A002. ASME. https://doi.org/10.1115/DSCC2015-9830
Download citation file: