For effective navigation and tracking applications involving Unmanned Aerial Vehicles (UAVs), data fusion from multiple sensors is utilized. However, asynchronous nature of the sensors, coupled with loss of data and communication delays, makes this process not very reliable. For a better estimation of the data, some sort of filtering scheme is needed. This paper presents an Extended Kalman Filter (EKF) based quadrotor state estimation by exploiting the dynamic model of the UAV. The data coming from the sensors is noisy and intermittent. The EKF filters and provides estimated data for the missing timestamps. An indoor flight test establishes the accuracy of the EKF, and another outdoor flight test validates the developed scheme for the real world scenario.

This content is only available via PDF.
You do not currently have access to this content.