For effective navigation and tracking applications involving Unmanned Aerial Vehicles (UAVs), data fusion from multiple sensors is utilized. However, asynchronous nature of the sensors, coupled with loss of data and communication delays, makes this process not very reliable. For a better estimation of the data, some sort of filtering scheme is needed. This paper presents an Extended Kalman Filter (EKF) based quadrotor state estimation by exploiting the dynamic model of the UAV. The data coming from the sensors is noisy and intermittent. The EKF filters and provides estimated data for the missing timestamps. An indoor flight test establishes the accuracy of the EKF, and another outdoor flight test validates the developed scheme for the real world scenario.
- Dynamic Systems and Control Division
Extended Kalman Filter Based Quadrotor State Estimation Based on Asynchronous Multisensor Data
Sarim, M, Nemati, A, Kumar, M, & Cohen, K. "Extended Kalman Filter Based Quadrotor State Estimation Based on Asynchronous Multisensor Data." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems. Columbus, Ohio, USA. October 28–30, 2015. V001T06A008. ASME. https://doi.org/10.1115/DSCC2015-9929
Download citation file: