The paper considers the eighth-order proton exchange membrane (PEM) fuel-cell mathematical model and shows that it has a multi-time scale property, indicating that the dynamics of three model state space variables operate in the slow time scale and the dynamics of five state variables operate in the fast time scale. This multi-scale nature allows independent controllers to be designed in slow and fast time scales using only corresponding reduced-order slow (of dimension three) and fast (of dimension five) sub-models. The presented design facilitates the design of hybrid controllers, for example, the linear-quadratic optimal controller for the slow subsystem and the eigenvalue assignment controller for the fast subsystem. The design efficiency and its high accuracy are demonstrated via simulation on the considered PEM fuel cell model.
- Dynamic Systems and Control Division
Two-Stage Design of Linear Feedback Controllers for a Proton Exchange Membrane Fuel Cell
Radisavljevic-Gajic, V, Rose, P, & Clayton, GM. "Two-Stage Design of Linear Feedback Controllers for a Proton Exchange Membrane Fuel Cell." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems. Columbus, Ohio, USA. October 28–30, 2015. V001T05A004. ASME. https://doi.org/10.1115/DSCC2015-9973
Download citation file: