This paper proposes an approach for minimizing tracking errors in systems with non-minimum phase (NMP) zeros by using filtered basis functions. The output of the tracking controller is represented as a linear combination of basis functions having unknown coefficients. The basis functions are forward filtered using the dynamics of the NMP system and their coefficients selected to minimize the errors in tracking a given trajectory. The control designer is free to choose any suitable set of basis functions but, in this paper, a set of basis functions derived from the widely-used non uniform rational B-spline (NURBS) curve is employed. Analyses and illustrative examples are presented to demonstrate the effectiveness of the proposed approach in comparison to popular approximate model inversion methods like zero phase error tracking control.
- Dynamic Systems and Control Division
Tracking Control of Non-Minimum Phase Systems Using Filtered Basis Functions: A NURBS-Based Approach
Duan, M, Ramani, KS, & Okwudire, CE. "Tracking Control of Non-Minimum Phase Systems Using Filtered Basis Functions: A NURBS-Based Approach." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems. Columbus, Ohio, USA. October 28–30, 2015. V001T03A006. ASME. https://doi.org/10.1115/DSCC2015-9859
Download citation file: