Robust Gain-Scheduling (RGS) control strategy has been considered in this paper. In contrast to the conventional gain-scheduling synthesis methods, the scheduling parameters are assumed to be inexactly measured. This is a practical assumption since measurement noise is inevitable even with very accurate sensors. Multi-simplex modeling approach was used to model the scheduling parameters and their uncertainties in a convex domain. Sufficient conditions in terms of Parametrized Linear Matrix Inequalities (PLMIs) for synthesizing dynamic output-feedback controllers are derived. The resulting controller not only guarantees robust stability and H2 performance but also ensures robustness against scheduling parameters uncertainties. The effectiveness of the developed conditions is demonstrated through numerical example with simulation and comparisons with existing approaches from literature. The comparison results confirm that the developed approach outperforms the existing ones considerably.
- Dynamic Systems and Control Division
Robust Gain-Scheduling Output Feedback Control With Noisy Scheduling Parameters
Al-Jiboory, AK, & Zhu, G. "Robust Gain-Scheduling Output Feedback Control With Noisy Scheduling Parameters." Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems. Columbus, Ohio, USA. October 28–30, 2015. V001T02A002. ASME. https://doi.org/10.1115/DSCC2015-9710
Download citation file: