In this paper, a nonlinear control of a tilting rotor quadcopter is presented. The overall control architecture is divided into two sub-controllers. The first controller is based on the feedback linearization control derived from the dynamic model of the tilting quadcopter. This controls the pitch, roll, and yaw motions required for movement along an arbitrary trajectory in space. The second controller is based on two PD controllers which are used to control the tilting of the quadcopter independently along the pitch and the yaw directions respectively. The overall control enables the quadcopter to combine tilting and movement along a desired trajectory simultaneously. Simulation studies are presented based on the developed nonlinear dynamic model of the tilting rotor quadcopter to demonstrate the validity and effectiveness of the overall control system for an arbitrary trajectory tracking.
- Dynamic Systems and Control Division
Non-Linear Control of Tilting-Quadcopter Using Feedback Linearization Based Motion Control Available to Purchase
Nemati, A, & Kumar, M. "Non-Linear Control of Tilting-Quadcopter Using Feedback Linearization Based Motion Control." Proceedings of the ASME 2014 Dynamic Systems and Control Conference. Volume 3: Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy. San Antonio, Texas, USA. October 22–24, 2014. V003T48A005. ASME. https://doi.org/10.1115/DSCC2014-6293
Download citation file: