In this paper, a nonlinear control of a tilting rotor quadcopter is presented. The overall control architecture is divided into two sub-controllers. The first controller is based on the feedback linearization control derived from the dynamic model of the tilting quadcopter. This controls the pitch, roll, and yaw motions required for movement along an arbitrary trajectory in space. The second controller is based on two PD controllers which are used to control the tilting of the quadcopter independently along the pitch and the yaw directions respectively. The overall control enables the quadcopter to combine tilting and movement along a desired trajectory simultaneously. Simulation studies are presented based on the developed nonlinear dynamic model of the tilting rotor quadcopter to demonstrate the validity and effectiveness of the overall control system for an arbitrary trajectory tracking.

This content is only available via PDF.
You do not currently have access to this content.