In this paper, a wireless human motion monitoring system based on joint angle sensors and smart shoes is introduced. An inertial measurement unit (IMU) is employed in a joint angle sensor to estimate the lower-extremity joint rotation in three dimensions. Four pressure sensors are embedded in a smart shoe to measure the distribution of ground contact forces (GCFs). Zig-bee and Bluetooth modules are combined with the joint angle sensors and smart shoes respectively to make the whole system wireless. It is shown that gait phase and step length can be calculated based on the raw sensor data for gait analysis. To provide visual feedback to the users, with the consent of Apple Inc., an user interface application is developed on an iPad. Experimental results are obtained from both a healthy subject and a stroke patient for comparison. Some discussions are made about the potential use of this system in a clinical environment.
- Dynamic Systems and Control Division
A Wireless Human Motion Monitoring System Based on Joint Angle Sensors and Smart Shoes Available to Purchase
Zhang, W, Tomizuka, M, & Byl, N. "A Wireless Human Motion Monitoring System Based on Joint Angle Sensors and Smart Shoes." Proceedings of the ASME 2014 Dynamic Systems and Control Conference. Volume 3: Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy. San Antonio, Texas, USA. October 22–24, 2014. V003T46A002. ASME. https://doi.org/10.1115/DSCC2014-5976
Download citation file: