It is not possible to directly measure the total mass of gas and liquid in the annulus and geological properties of the reservoir during petroleum exploration and production drilling. Therefore, these parameters and states must be estimated by online estimators with proper measurements. This paper describes a nonlinear Moving Horizon Observer to estimate the annular mass of gas and liquid, and production constants of gas and liquid from the reservoir into the well during Under-Balanced Drilling with measuring the choke pressure and the bottom-hole pressure. This observer algorithm based on a low-order lumped model is evaluated against Joint Unscented Kalman filter for two different simulations with low and high measurement noise covariance. The results show that both algorithms are capable of identifying the production constants of gas and liquid from the reservoir into the well, while the nonlinear Moving Horizon Observer achieves better performance than the Unscented Kalman filter.
- Dynamic Systems and Control Division
Nonlinear Moving Horizon Observer for Estimation of States and Parameters in Under-Balanced Drilling Operations
Nikoofard, A, Johansen, TA, & Kaasa, G. "Nonlinear Moving Horizon Observer for Estimation of States and Parameters in Under-Balanced Drilling Operations." Proceedings of the ASME 2014 Dynamic Systems and Control Conference. Volume 3: Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy. San Antonio, Texas, USA. October 22–24, 2014. V003T37A002. ASME. https://doi.org/10.1115/DSCC2014-6074
Download citation file: