The Laser Metal Deposition (LMD) process is an additive manufacturing process in which a laser and a powdered material source are used to build functional metal parts in a layer by layer fashion. While the process is usually modeled by purely temporal dynamic models, the process is more aptly described as a repetitive process with two sets of dynamic processes: one that evolves in position within the layer and one that evolves in part layer. Therefore, to properly control the LMD process, it is advantageous to use a model of the LMD process that captures the dominant two dimensional phenomena and to address the two-dimensionality in process control. Using an identified spatial-domain Hammerstein model of the LMD process, the open loop process stability is examined. Then, a stabilizing controller is designed using error feedback in the layer domain.

This content is only available via PDF.
You do not currently have access to this content.