A high-speed milling system is considered, which is prone to chatter vibration, a stability condition dependent on system parameters (e.g., cutting force coefficients). This work is motivated by the need for model parameters which can be used in stability analysis. An Extended Kalman Filter (EKF) is proposed to estimate cutting force coefficients for each tooth in a low-radial-immersion milling process to aid chatter stability prediction. The proposed EKF utilizes tool deflection measurements and no force measurements. The model used in the EKF is found to be observable, a quality required to achieve valid state estimations. Running the EKF with experimental tool deflection measurements produces estimates of cutting force coefficients that result in good correlation between simulation (using the estimated coefficients) and experiment. Such an EKF may help customize chatter stability analysis to any particular tool-workpiece system.

This content is only available via PDF.
You do not currently have access to this content.