This study presents an intersection of two seemingly separate areas of research frontiers, “prediction and control of thermoacoustic instability” and “stability analysis of neutral-class linear-time-invariant (LTI) and time-delayed systems (TDS)”. The former is a coveted capability which has been elusive to the scientific community over 1½ centuries. Analytical capabilities have been limited due to the complex physics invoking the “combustion” phenomenon. Most available results rely on accumulated empirical knowledge. In this paper we consider a benchmark combustion test platform, which is known as Rijke’s tube. Its representation is simplified to an LTI neutral TDS, stability of which is assessed using a recent mathematical paradigm called the Cluster Treatment of Characteristic Roots (CTCR). CTCR provides a unique non-conservative and exhaustive stability declaration for a Rijke’s tube within the space of its parameters, naturally, under some simplifying assumptions. For those operating conditions which induce instability, we also propose a conventional and simple control strategy which can recover stability. This method is also analyzed using the CTCR paradigm for the first time.

This content is only available via PDF.
You do not currently have access to this content.