In motion systems, high controller gains are beneficial in order to suppress disturbances acting on the system. Low-damped non-rigid body (NRB) resonances usually limit this controller gain. The result is a bound on the maximum achievable sensitivity, i.e. the suppression of low frequent position disturbances. Robust Mass Dampers (RMD’s) with a relatively high damping value have shown to be able to increase the NRB damping over a broad frequency range. The main difficulty is to determine the stiffness and damping parameters for these damper mechanisms in order to optimize the closed loop performance of the motion system. This paper proposes a modulus margin based iterative optimization procedure which includes a plant model with dampers added and a PID+ type controller. The results are optimal damper parameters — stiffness and damping — in combination with an as high as possible controller gain, which result in an improved disturbance suppression at frequencies below the bandwidth and a faster setpoint tracking.

This content is only available via PDF.
You do not currently have access to this content.