This article discusses the challenges of non-intrusive state measurement for the purposes of online monitoring and control of Ultraviolet (UV) curing processes. It then proposes a two-step observer design scheme involving the estimation of distributed temperature from boundary sensing cascaded with nonlinear cure state observers. For the temperature observer, backstepping techniques are applied to derive the observer partial differential equations along with the gain kernels. For subsequent cure state estimation, a nonlinear observer is derived along with analysis of its convergence characteristics. While illustrative simulation results are included for a composite laminate curing application, it is apparent that the approach can also be adopted for other UV processing applications in advanced manufacturing.
- Dynamic Systems and Control Division
Observer Design for State Estimation of UV Curing Processes
Yebi, A, Ayalew, B, & Dey, S. "Observer Design for State Estimation of UV Curing Processes." Proceedings of the ASME 2014 Dynamic Systems and Control Conference. Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing. San Antonio, Texas, USA. October 22–24, 2014. V002T24A005. ASME. https://doi.org/10.1115/DSCC2014-6024
Download citation file: