Accurate real-time knowledge of battery internal states and physical parameters is of the utmost importance for intelligent battery management. Electrochemical models are arguably more accurate in capturing physical phenomena inside the cells compared to their data-driven or equivalent circuit based counterparts. Moreover, consideration of the coupling between electrochemical and thermal dynamics can be potentially beneficial for accurate estimation. In this paper, a nonlinear adaptive observer design is presented based on a coupled electrochemical-thermal model for a Li-ion cell. The proposed adaptive observer estimates distributed Li-ion concentrations, lumped temperature and some electrochemical parameters simultaneously. The observer design is split into two separate parts to simplify the design procedure and gain tuning. These separate parts are designed based on Lyapunov’s stability analysis guaranteeing the convergence of the combined state-parameter estimates. Simulation studies are provided to demonstrate the effectiveness of the scheme.

This content is only available via PDF.
You do not currently have access to this content.