Conventional prosthetic devices substitute lost human limbs with mechanical proxies to enable amputees perform daily chores. We present an alternative approach that may replace or supplement traditional upper-limb prostheses by utilizing and enhancing the functionality of the remaining healthy limb with a new type of wrist-mounted robot: the Supernumerary Robotic (SR) Fingers. These SR Fingers are naturally and implicitly coordinated with the motion of the human fingers to provide assistance in a variety of prehensile tasks that are usually too difficult to carry out with a single hand, such as grasping a large/oddly shaped object or taking the lid off a jar. A novel control algorithm, termed “Bio-Artificial Synergies”, is developed so the SR Fingers can share a work load and adapt to diverse task conditions just like the real fingers do. Through grasp experiments and data analysis, postural synergies were found for a seven-fingered hand comprised of two SR Fingers and five human fingers. The synergy-based control law was then extracted from the experimental data using Partial Least Squares Regression (PLSR) and tested on the SR Finger prototype on a number of common tasks to demonstrate the usefulness and effectiveness of this new class of prosthetic device.
- Dynamic Systems and Control Division
Supernumerary Robotic Fingers: An Alternative Upper-Limb Prosthesis
Wu, F, & Asada, H. "Supernumerary Robotic Fingers: An Alternative Upper-Limb Prosthesis." Proceedings of the ASME 2014 Dynamic Systems and Control Conference. Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing. San Antonio, Texas, USA. October 22–24, 2014. V002T16A009. ASME. https://doi.org/10.1115/DSCC2014-6017
Download citation file: