This paper shapes the periodic cycling of a lithium-ion battery to maximize the battery’s parameter identifiability. The paper is motivated by the need for faster and more accurate lithium-ion battery diagnostics, especially for transportation. Poor battery parameter identifiability makes diagnostics challenging. The existing literature addresses this challenge by using Fisher information to quantify battery parameter identifiability, and showing that test trajectory optimization can improve identifiability. One limitation is this literature’s focus on offline estimation of battery model parameters from multi-cell laboratory cycling tests. This paper is motivated, in contrast, by online health estimation for a target battery or cell. The paper examines this “targeted estimation” problem for both linear and nonlinear second-order equivalent-circuit battery models. The simplicity of these models leads to analytic optimal solutions in the linear case, providing insights to guide the setup of the optimization problem for the nonlinear case. Parameter estimation accuracy improves significantly as a result of this optimization. The paper demonstrates this improvement for multiple electrified vehicle configurations.
- Dynamic Systems and Control Division
Maximizing Parameter Identifiability of an Equivalent-Circuit Battery Model Using Optimal Periodic Input Shaping
Rothenberger, MJ, Anstrom, J, Brennan, S, & Fathy, HK. "Maximizing Parameter Identifiability of an Equivalent-Circuit Battery Model Using Optimal Periodic Input Shaping." Proceedings of the ASME 2014 Dynamic Systems and Control Conference. Volume 1: Active Control of Aerospace Structure; Motion Control; Aerospace Control; Assistive Robotic Systems; Bio-Inspired Systems; Biomedical/Bioengineering Applications; Building Energy Systems; Condition Based Monitoring; Control Design for Drilling Automation; Control of Ground Vehicles, Manipulators, Mechatronic Systems; Controls for Manufacturing; Distributed Control; Dynamic Modeling for Vehicle Systems; Dynamics and Control of Mobile and Locomotion Robots; Electrochemical Energy Systems. San Antonio, Texas, USA. October 22–24, 2014. V001T19A004. ASME. https://doi.org/10.1115/DSCC2014-6272
Download citation file: