In this paper we employ a modified filtered-x least mean squares (MFX-LMS) method to synthesis an adaptive repetitive controller for rejecting periodic disturbances at selective frequencies. We show how a MFX-LMS algorithm can be utilized when the reference signal is deterministic and periodic. A new adaptive step size is proposed with the motivation to improve the convergence rate of the MFX-LMS algorithm and fade the steady state excess error caused by the variation of estimated parameters in a stochastic environment. A novel secondary path modeling scheme is proposed to compensate for the modeling mismatches online. We further discuss the application of this adaptive controller in hard disk drives that use Bit Patterned Media Recording. Finally we present the results of comprehensive realistic numerical simulations and experimental implementations of the algorithms on a hard disk drive servo mechanism that is subjected to periodic disturbances known as repeatable runout.

This content is only available via PDF.
You do not currently have access to this content.