Active magnetic bearings (AMBs) provide support to rotating machinery through magnetic forces which are regulated through active feedback control. As AMBs continue to establish themselves as a proven technology, many classical and modern techniques are being employed to address the design of the control law. The current work studies three of the controller design techniques which are common in the literature for AMB applications: PID, LQG, and μ-synthesis. A controller is designed for an AMB system using each of the three techniques. Details of the design processes are given and the resulting controllers are compared. Finally, the controllers are implemented on the experimental system and the closed-loop characteristics are measured and evaluated. This work provides a common case study to demonstrate the strengths and weaknesses of PID, LQG, and μ-synthesis control methodologies as applied to a specific AMB system.

This content is only available via PDF.
You do not currently have access to this content.