The development of control strategies that allow stiff industrial robots to operate safely in unstructured environments is a significant challenge. This paper integrates two strategies that improve safety for industrial manipulators in uncertain conditions. First, software compliance in the task space is implemented using force feedback. End-effector compliance is vital for many tasks, such as interacting with humans or manipulating uncertain payloads. Beyond compliance, a collision detection algorithm detects collisions based on joint torque deviation from a dynamic model. Collisions can be detected at any point along the manipulator via loading or impulse anomalies. Joint torque data is typically noisy, and the accuracy of the robot dynamic model is limited, so an Extended Kalman Filter (EKF) was developed to improve the torque estimates. Experiments and demonstrations were performed using a commercially available 7DOF industrial robot. The EKF improved collision detection during unplanned contact tasks, and the method described here is hardware agnostic and extensible.

This content is only available via PDF.
You do not currently have access to this content.