This paper presents the sensitivity analyses on vehicle motions with regard to faults of in-wheel motors and steering motor for an electric ground vehicle (EGV) with independently actuated in-wheel rear motors. Based on the vehicle model, direct method is applied to determine, to what extent, that different actuator faults affect vehicle motions such as the longitudinal velocity, lateral velocity, and yaw rate. For motion indices like vehicle sideslip angle and longitudinal acceleration, linearizations around equilibrium points are conducted and their sensitivities to actuator faults are analyzed. Results show that all mentioned vehicle motions are more sensitive to the fault of steering motor than that of in-wheel motors. In addition, the effects on vehicle motions due to four types of faults, i.e. additive, loss-of-effectiveness, time-varying-gain and stuck-at-fixed-level faults, are examined through CarSim® simulations and vehicle experiments under a representative maneuver.

This content is only available via PDF.
You do not currently have access to this content.