Developed in this paper is a new approach to subsea production two-phase flow modeling and control of pipeline and manifold assemblies. For that purpose, a reduced-order model is developed for transient two-phase gas-liquid flow in pipelines. First, a mechanistic model is used to calculate the steady-state pressure drop and liquid holdup. From this model, effective fluid properties are calculated and used as arguments to the dissipative distributed parameter model. A modal approximation technique is then used to render the model into a rational polynomial form appropriate for time-domain analysis and controller design. A new low-frequency magnitude correction is applied to the approximated transfer functions providing an improved matching for the steady-state gain without affecting the dynamics of the system. The resulting low-dimensional two-phase flow model is then used to coordinate the arriving pressures at the manifold for different GVF levels through electro-hydraulic valves located at the wellheads.
- Dynamic Systems and Control Division
Subsea Production Two-Phase Flow Modeling and Control of Pipeline and Manifold Assemblies
Meziou, A, Chaari, M, Franchek, M, Grigoriadis, K, Tafreshi, R, & Ebrahimi, B. "Subsea Production Two-Phase Flow Modeling and Control of Pipeline and Manifold Assemblies." Proceedings of the ASME 2014 Dynamic Systems and Control Conference. Volume 1: Active Control of Aerospace Structure; Motion Control; Aerospace Control; Assistive Robotic Systems; Bio-Inspired Systems; Biomedical/Bioengineering Applications; Building Energy Systems; Condition Based Monitoring; Control Design for Drilling Automation; Control of Ground Vehicles, Manipulators, Mechatronic Systems; Controls for Manufacturing; Distributed Control; Dynamic Modeling for Vehicle Systems; Dynamics and Control of Mobile and Locomotion Robots; Electrochemical Energy Systems. San Antonio, Texas, USA. October 22–24, 2014. V001T09A002. ASME. https://doi.org/10.1115/DSCC2014-6081
Download citation file: