One of the predominant difficulties in the theory of distributed structure control systems comes from the fact that these resonant structures have a large number of active modes in the working band-width. Among the different methods for vibration control, Positive Position Feedback (PPF) is of interest, which uses piezoelectric actuation to overcome the vibration as a collocated controller. Modified Positive Position Feedback (MPPF) is later presented by adding a first-order damping compensator to the conventional second-order compensator, to have a better performance for steady-state and transient disturbances. In this paper, Multivariable Modified Positive Position Feedback (MMPPF) is presented to suppress the unwanted resonant vibrations in the structure. This approach benefits the advantages of MPPF, while it controls larger number vibration modes. An optimization method is introduced, consisting of a cost function that is minimized in the area of the stability of the system. LQR problem is also used to optimize the controller performance by optimized gain selection. It is shown that the LQR-optimized MMPPF controller provides vibration suppression in more efficiently manner.
- Dynamic Systems and Control Division
Active Vibration Control of Resonant Systems via Multivariable Modified Positive Position Feedback Available to Purchase
Omidi, E, & Mahmoodi, SN. "Active Vibration Control of Resonant Systems via Multivariable Modified Positive Position Feedback." Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control. Palo Alto, California, USA. October 21–23, 2013. V003T48A001. ASME. https://doi.org/10.1115/DSCC2013-3910
Download citation file: