Surveillance missions that involve unmanned ground vehicles (UGVs) include situations where a UGV has to choose between alternative paths to complete its mission. Currently, UGV missions are often limited by the available on-board energy. Thus, we propose a dynamic most energy-efficient path planning algorithm that integrates mission prior knowledge with real-time sensory information to identify the mission’s most energy-efficient path. Our proposed approach predicts and updates the distribution of energy requirement of alternative paths using recursive Bayesian estimation through two stages: (1) exploration — road segments are explored to reduce their energy prediction uncertainty; (2) exploitation — the most energy-efficient path is selected using the collected information in the exploration stage and is traversed. Our simulation results show that the proposed approach outperforms offline methods, as well as a method that only relies on exploitation to identify the most energy-efficient path.
- Dynamic Systems and Control Division
Real-Time Energy-Efficient Path Planning for Unmanned Ground Vehicles Using Mission Prior Knowledge
Sadrpour, A, Jin, J(, & Ulsoy, AG. "Real-Time Energy-Efficient Path Planning for Unmanned Ground Vehicles Using Mission Prior Knowledge." Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control. Palo Alto, California, USA. October 21–23, 2013. V003T47A002. ASME. https://doi.org/10.1115/DSCC2013-3909
Download citation file: