In this paper, we present an innovative active non-intrusive system identification approach to cardiovascular monitoring. The proposed approach is based on a dual collocated actuator-sensor system for cardiovascular system identification, in which the actuators actively excite the arterial tree to create rich and informative trans-mural pressure waves traveling in the arterial tree, which are then non-intrusively measured by the collocated sensors. In our previous work, we developed a mathematical model to reproduce the propagation of intra-vascular (arterial) and extra-vascular (artificial) pressure waves along the arterial tree. Then, we used a dual (radial-femoral) blood pressure cuff system as a prototype dual collocated actuator-sensor system to demonstrate the proposed methodological framework to create rich trans-mural pressure waves as well as to non-intrusively reconstruct them from sensor measurements. In this follow-up work, we propose a novel system identification algorithm to derive cardiovascular system dynamics and reconstruct central aortic blood pressure waveform from the trans-mural pressure waves observed at the peripheral locations. It was successfully demonstrated that the system identification algorithm was able to reconstruct the central aortic blood pressure accurately, and that its performance was superior to the passive non-intrusive approach.

This content is only available via PDF.
You do not currently have access to this content.